National Institute of Standards & Technology ## Certificate of Analysis ## **Standard Reference Material C1152a** Stainless Steel, 18Cr-11Ni (In Cooperation with the American Society for Testing and Materials) This Standard Reference Material (SRM) is in the form of disks approximately 32 mm (1 1/4 in) in diameter and 19 mm (3/4 in) thick, intended for use in optical emission and x-ray spectrometric methods of analysis. | Certified Value, ¹ % by wt. | Estimated Uncertainty ² | |--|--| | 0.142 | 0.002 | | .95 | .02 | | .023 | .003 | | .0064 | .0006 | | .64 | .02 | | .097 | .002 | | 10.86 | .04 | | 17.76 | .04 | | 0.033 | .005 | | .44 | .01 | | .22 | .01 | | .0047 | .0001 | | | % by wt. 0.142 .95 .023 .0064 .64 .097 10.86 17.76 0.033 .44 .22 | ¹ The certified value listed for a constituent is the present best estimate of the "true" value based on the results of the cooperative program for certification. Gaithersburg, MD 20899 February 12, 1990 William P. Reed, Acting Chief Office of Standard Reference Materials (over) ² The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability. No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents. METALLURGICAL CONDITION: The specimens were chill cast by a rapid unidirectional solidification technique. CERTIFIED PORTION: The certified portion for each specimen is that extending upward 16 mm (5/8 in) from the chill cast or test surface (the largest surface opposite the numbered surface). This portion only was analyzed in the cooperative program for certification. The overall coordination of the technical measurements leading to certification was performed under the direction of J.I. Shultz, Research Associate, ASTM/NIST Research Associate Program. The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R.E. Michaelis. PLANNING, PREPARATION, TESTING, ANALYSIS: This stainless steel SRM is one of a set of four that have been prepared in a cooperative Industry-NIST program. The compositions have been tailored to provide concentration ranges for the elements normally specified in most austenitic stainless steels of the typical 18 Cr - 8 Ni type. A concentration range for a number of trace elements also has been provided to enhance the utility of the four standards. The material for this standard was melted and cast at Esco Corporation, Portland, Oregon, L.E. Finch, under an NIST contract with the Steel Founders' Society of America (SFSA). A massive water-cooled, copper-plate mold assembly made by Esco for the SFSA was used in the preparation of the chill-castings. The preparation and plan for homogeneity testing was similar to that described in NBS Misc. Publ. 260-1, Standard Reference Materials: Preparation of NBS White Cast Iron Spectrochemical Standards, Robert E. Michaelis and LeRoy L. Wyman, June 19, 1964. Homogeneity testing was carried out at the National Institute of Standards and Technology (NIST) by metallographic studies, C.H. Brady; by optical emission analysis, J.A. Norris; and by x-ray fluorescence analysis, P.A. Pella. Composite samples for chemical analyses were prepared in the form of millings cut from the certified portion of representative specimens of the lot of chill castings. Cooperative analyses for certification, carried out under the auspices of the ASTM-NIST Research Associate Program, were performed in the following analytical laboratories. Armco Steel Corporation, Research Center, Middletown, Ohio, M. Dannis, R.L. LeRoy, L.C. Bartels, R.L. Swigert, J.W. Leeker, B.J. Young, D.W. Bigelow, O. Brezny, T.F. Terrell, J. Rein, J.W. Garrett, and G.D. Smith. Carpenter Technology Corporation, Reading, Pa., T.R. Dulski. Foster-Wheeler Development Corporation, Livingston, N.J., M.M. Fornoff and G. Lantos. National Institute of Standards and Technology (NIST), Center for Analytical Chemistry, Inorganic Analytical Research Division, B.I. Diamondstone, J.D. Fassett, H.M. Kingston, L.A. Machlan, E.J. Maienthal, L.J. Moore, J.A. Norris, and P.J. Paulsen. Republic Steel Corporation, Central Alloy Division, Canton, Ohio, R.W. Jones, L.R. Staudt, and B.G. Brainard. Additional Information on the Composition: Certification is made only for the elements indicated. This SRM, however, contains additional elements as indicated below. These are not certified, but are given as additional information on the composition. | Element | Concentration, % by wt. | |----------|-------------------------| | Aluminum | (0.004) | | Arsenic | (.016) | | Bismuth | (.0001) | | Boron | (`.004) | | Niobium | (`.15) | | Nitrogen | (.055) | | Tantalum | (.001) | | Tin | (.014) | ## **CAUTIONS:** - 1. Analyses made on other than the chill-cast surface and within the portion certified are not recommended because of the unidirectional solidification structure. - 2. This stainless steel standard is designed for calibration in the analysis of samples prepared in the same manner; samples prepared by other casting techniques or having other than a chill-cast structure may exhibit systematic errors in the analytical results.